3.256 \(\int \frac{(b \cos (c+d x))^n}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=80 \[ \frac{2 \sin (c+d x) (b \cos (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{4} (2 n-1);\frac{1}{4} (2 n+3);\cos ^2(c+d x)\right )}{d (1-2 n) \sqrt{\sin ^2(c+d x)} \sqrt{\cos (c+d x)}} \]

[Out]

(2*(b*Cos[c + d*x])^n*Hypergeometric2F1[1/2, (-1 + 2*n)/4, (3 + 2*n)/4, Cos[c + d*x]^2]*Sin[c + d*x])/(d*(1 -
2*n)*Sqrt[Cos[c + d*x]]*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0285066, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {20, 2643} \[ \frac{2 \sin (c+d x) (b \cos (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{4} (2 n-1);\frac{1}{4} (2 n+3);\cos ^2(c+d x)\right )}{d (1-2 n) \sqrt{\sin ^2(c+d x)} \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^n/Cos[c + d*x]^(3/2),x]

[Out]

(2*(b*Cos[c + d*x])^n*Hypergeometric2F1[1/2, (-1 + 2*n)/4, (3 + 2*n)/4, Cos[c + d*x]^2]*Sin[c + d*x])/(d*(1 -
2*n)*Sqrt[Cos[c + d*x]]*Sqrt[Sin[c + d*x]^2])

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(b^IntPart[n]*(b*v)^FracPart[n])/(a^IntPart[n
]*(a*v)^FracPart[n]), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{(b \cos (c+d x))^n}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\cos ^{-n}(c+d x) (b \cos (c+d x))^n\right ) \int \cos ^{-\frac{3}{2}+n}(c+d x) \, dx\\ &=\frac{2 (b \cos (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{4} (-1+2 n);\frac{1}{4} (3+2 n);\cos ^2(c+d x)\right ) \sin (c+d x)}{d (1-2 n) \sqrt{\cos (c+d x)} \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0823002, size = 80, normalized size = 1. \[ -\frac{\sqrt{\sin ^2(c+d x)} \csc (c+d x) (b \cos (c+d x))^n \, _2F_1\left (\frac{1}{2},\frac{1}{2} \left (n-\frac{1}{2}\right );\frac{1}{2} \left (n+\frac{3}{2}\right );\cos ^2(c+d x)\right )}{d \left (n-\frac{1}{2}\right ) \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^n/Cos[c + d*x]^(3/2),x]

[Out]

-(((b*Cos[c + d*x])^n*Csc[c + d*x]*Hypergeometric2F1[1/2, (-1/2 + n)/2, (3/2 + n)/2, Cos[c + d*x]^2]*Sqrt[Sin[
c + d*x]^2])/(d*(-1/2 + n)*Sqrt[Cos[c + d*x]]))

________________________________________________________________________________________

Maple [F]  time = 0.218, size = 0, normalized size = 0. \begin{align*} \int{ \left ( b\cos \left ( dx+c \right ) \right ) ^{n} \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^n/cos(d*x+c)^(3/2),x)

[Out]

int((b*cos(d*x+c))^n/cos(d*x+c)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (b \cos \left (d x + c\right )\right )^{n}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^n/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c))^n/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\left (b \cos \left (d x + c\right )\right )^{n}}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^n/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c))^n/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (b \cos{\left (c + d x \right )}\right )^{n}}{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**n/cos(d*x+c)**(3/2),x)

[Out]

Integral((b*cos(c + d*x))**n/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (b \cos \left (d x + c\right )\right )^{n}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^n/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c))^n/cos(d*x + c)^(3/2), x)